For the 360 million people worldwide who lack some or all of their ability to hear, technological interventions have already come a long way. But still, they're not perfect. Hearing aids don't translate certain frequencies as well as regular hearing, and some users find hearing interventions uncomfortable or are ideologically opposed to them.
Soon that might all change. Scientists are working on a number of experimental techniques that may soon transform hearing interventions. That could greatly improve the quality of life for millions, who have been waiting a long time — the last major innovation in hearing technology occurred in 1985.
Normal hearing is more simple than it may appear. Sound waves move through the ear canal and pulse the ear drum, which then moves the tiny bones inside the middle ear. They in turn tap the cochlea, a snail shell–looking structure that contains thousands of delicate hairs and fluid. The cochlea converts mechanical signals into electrical ones, which it then passes to the auditory nerve, which transmits it to the brain for processing.
Read More
Soon that might all change. Scientists are working on a number of experimental techniques that may soon transform hearing interventions. That could greatly improve the quality of life for millions, who have been waiting a long time — the last major innovation in hearing technology occurred in 1985.
Normal hearing is more simple than it may appear. Sound waves move through the ear canal and pulse the ear drum, which then moves the tiny bones inside the middle ear. They in turn tap the cochlea, a snail shell–looking structure that contains thousands of delicate hairs and fluid. The cochlea converts mechanical signals into electrical ones, which it then passes to the auditory nerve, which transmits it to the brain for processing.
Read More
No comments:
Post a Comment